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flow may start with the accelerating or decelerating mode and arrive at the terminal velocity 
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I n t r o d u c t i o n  

A passive containment cooling system for a nuclear reactor 
(EPRI 1989) consists of flow of a thin water film over a cylinder 
topped by a dome formed by an ellipsoid of revolution at a 
mean velocity of less than 1 m/s. The film thickness (of the 
order of 1 mm or less) is much smaller than the radius of the 
cylinder (of the order of 10 m). Therefore, flow over the body 
of revolution can be treated as that over an inclined plane. 
Uniform wetting and flow were assured by a surface coating 
and at a flow rate from the top of the dome over the entire 
vessel given by the criterion of Hartley and M urgatroyd (I 964) 
based on surface interactions. This note treats the basic inter- 
actions in the flow system and gives solutions to the cases of 
symmetric film flow. It provides an understanding of the 
problem to facilitate the efforts of numerical computation. 

The geometry of a containment vessel can be represented by 
the domed cylinder as shown in Figure 1, giving the coordinate 
system. The balance of averaged momentum in a developing 
symmetric liquid film flow over this containment vessel is 
approximated by 

umdu~dx  = - ( z / p b )  + g sin 0 (1) 

neglecting the friction of the air outside the film (nearly 4 
percent of that at the wall in a practical system) and the effect 
of surface tension or waves (Fulford 1964; Faghri and Payvar 
1979) and the effect of heat and mass transfer, for the sake of 
simplicity in discussing the solution in closed forms. Moreover, 
there is no pressure drop along the x-direction because of the 
lack of a free stream of the liquid (Levich 1964). In addition, 
Um is the mean film velocity, x is the coordinate along a 
meridian, p is the density of the liquid, b is the thickness of the 
film, 0 is the gravitational acceleration, 0 is the angle made by 
the flow direction with that normal to the gravity, and T is the 
shear resistance at the wall due to viscosity of the liquid 
(Fulford 1964). When the film reaches its terminal velocity, we 
get 

r = gpb sin 0 =fPUZm/2 (2) 
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where f is the friction factor. We further note that when the 
fully developed velocity of the film is reached, the shear stress 
supports the body force per unit area (Fulford 1964), or 

f = gb sin 0/(u2/2) (3) 

The film thickness b and the volumetric flow rate per unit width 
QL are related according to: 

bum = QL = Q/2rrr (4) 

where Q is the total flow rate, r is the radius, which is a variable 
in the domed section, and radius r = R of the cylindrical 
section. 

The above relations are applicable to both laminar and 
turbulent flow regimes. The only assumption is that with the 
velocity distribution in the film flow, the rate of change of 
momentum is given by the average velocity in Equation 1. The 
degree of approximation due to such an assumption will be 
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Figure 1 Geometry and coordinates of general cylinder with dome 
of ellipsoid of revolution. Reduce to hemispherical dome when 
h = R, 0 = polar angle 
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discussed later. The friction factors, however, differ according 
to the flow regimes. 

For  laminar flow, neglecting the friction of the air outside of 
the film, the velocity distribution in the film is parabolic, being 
zero at the wall. The inlet length for the development of the 
boundary layer inside the film has been shown to be extremely 
small (Appendix 1). For  flow down an inclined plane, Nusselt 
(see Fulford 1964) gave the mean terminal velocity: 

Umt = g sin Ob2/3v (5) 

where v is the kinematic viscosity. Combining Equation 5 with 
Equation 4 gives 

Umt = [(g sin O/3v)Q2L] 1/3 

and the terminal film thickness 

b t = (QL3v/g sin 0) 1/3 

(6) 

(7) 

These relations give, for Reynolds number Re given by QL/V, 

fL = g sin ObJ(u2t/2) = 6v/Q L = 6/Re (8) 

Laminar film flow exists over most of the operating range of 
a containment cooling system; turbulent flow may occur at 
the upper range of flow and at elevated temperatures, which 
leads to reduced kinematic viscosity. For  turbulent flow, in 
spite of the facts that the turbulence in the film is dampened 
by the liquid surface tension and the velocity profile of the film 
is not well known, one gets, from the turbulent velocity profile 
given in Schlichting (1979), 

Zx = (0.0225) 2 (pu2/2Xv/usy) TM = f T(1/2)pu 2 (9) 

where u~ is now the velocity at the liquid surface, u m ~ 0.817us 
for a 1/7th velocity profile, and y is nearly the displacement 
thickness and is equal to b/3.9 for the present system. Equation 
9 gives 

f r  = 9 sin Obt/(u2t/2) = 0.09/Re a/" (10) 
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This confirms the transition Reynolds number of 270 given in 
Fulford (1964): both Equations 8 and 10 give f = 0.0222 at 
Re = 270. For  turbulent flow we get 

Umt = [g sin OQSL/4/O.O45v 1/4] 1/3 (11) 

and 

brat = [O.045vl/4QT/4/g sin 0] 1/3 (12) 

Since wave motion in the film is neglected, the solution of 
Equation 1 gives the average velocity and thickness of the 
developing liquid film flow. 

Symmetr ic  f i lm f l o w  over an ellipsoid 
of  revolut ion 

For  minor radius h and major radius R, the coordinates r and 
z are related by 

(r/R) 2 + [1 - (z/h)] 2 = 1 (13) 

which gives, for z less than h, 

dz = (h/R)2(h - z ) -  Xr dr (14) 

The meridian coordinate x is given by 

(dx) 2 = (dr) 2 + (dz) 2 (15) 

and dz = dx for z >_ h; substitution of Equation 14 gives (let 
1 - (h/R) 2 = a) 

dx = [(1 - a(r/R)211/211 - (r/R) 2]-  1/2 dr (16) 

The angle 0 in Figure 2 is given by 

tan 0 = dz/dr = (h/g)(r/R)[ 1 - (r/R) 2] - 1/2 (17) 

and sin 0 is now given by 

sin 0 = (h/R)(r/R)[1 - a(r/R) 2] -1/2 (18) 

Notat ion  
b 
f 
F 
Fr  
g 
G 
h 
Q 
QL 
r 

R 
R* 

Re 
U 

l) 

X, y 
X 
Z 

Film thickness 
Friction factor 
Reduced Froude number 
Froude number of film 
Gravitational acceleration 
A function defined by Equation 33 
Height of dome 
Volume flow rate 
Volume flow rate per unit width 
Radial coordinate or radius 
Radius of dome and cylinder 
Dimensionless quantities for film flow, laminar (sub 
L) or turbulent (sub T) 
Reynolds number of film 
Longitudinal component of velocity in the film 
Normal component of velocity 
Coordinates as defined 
Dimensionless longitudinal coordinate 
Axial coordinate or direction of gravity 

Greek symbols 

6 Boundary layer thickness inside the film or con- 
densing liquid film thickness 

0 

Ox 

P 

Displacement thickness of the boundary layer as 
defined in Equation A.2 
Angle made with direction normal to gravity, or 
polar angle 
Momentum thicknesses of the boundary layer as 
defined in Equation A.3 
Kinematic viscosity 
Density 
Shear stress 

Subscripts (properties without subscript refer to water or 
liqui~ 
a Air 
L Laminar 
m Mean 
o Reference quantity or outer passage 
R At radius R 
s Surface of liquid film 
t Terminal 
T Turbulent 
w Wall 

Superscript 

+ Dimensionless quantities 
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Figure 2 Symmetric f low 
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Note  that for a spherical dome, R = h ,  dx = [ 1 - ( r / R )  2] -1/2 dr, 
or x = R s in-  1(r/R) = RO. 0 is the polar angle, or sin 0 = r/R. 
The cylindrical part begins as 0 reaches n/2. 

Equat ion 1 can be written as 

Um dum/dx = - f (u~ /2b)  + 9 sin 0 (19) 

Introducing u + = uJu,~tR (where UmtR is gwen by u.,t at r = R 
and 0 = n/2 for nondimensionalizing) and r + = r/R, together 
with Equat ion 4, Equat ion 19 can be rearranged as 

(U2tR/g)U +du +/dx sin 0 a + 3 = - ( f /2)(2nr/Qo)u, ,Ru (20) 

Note  that f depends on the flow regime as given by Equations 
8 and 10. Equat ion 20 now becomes 

R . u  + du + /dr + = (h/R)r +(1 _ r+2) - x/2 
- r + " [ 1  - ar+211/2(1 - -  F + 2 ) - l / 2 u  +3 (21) 

where, for laminar flow, n -- 2, and R* is given by 

R* = [(Q/2~z)4/9RTv2g] 1/3 = [ReRFrva/3] 2/3 (22) 

where Re R = Q/2nRv  = QL~/V and the Froude number  based 
on characteristic dimension R is defined as Fr  R = (Q/2rcR)/ 
(R3g)l/2; R* is therefore a parameter  correlating the effect of 
gravity and viscosity for given volumetric flow rate per unit 
width of film. Fo r  turbulent flow, n = 5/4, and R* is given by 

5/2 2 11/2 1/2 1/3 R* = [(Q/2n) /0.005 R v 9] = [Re~/4FrR/0.045] 2/3 
(23) 

with turbulent flow at Re = (Q/2rcr)/v = ReMr + of greater than 
270 where R~ = R~.; transition to laminar flow may occur as 
the film proceeds downward.  A comparison of the above 
approximation based on Equat ion 1 to that based on 
momentum integral method is given in Appendix 1, together 
with the effect of boundary-layer growth. 

Integration of Equat ion 21 is to be carried out for each 
combinat ion of system parameters R* and (h/R) for laminar 
and turbulent flow, from r + = 0 to 1, for the range 0 _< u + _< 1 
for accelerating flow, with a series expansion from r + = 0, and 
for the range 1 < u + < ~ ,  or  decelerating flow, starting from 
an asymptotic expansion from large u +. These are followed by 
numerical computat ion to r + = 1. r + = 1 is at the edge of the 

dome, where the transition to flow over the cylinder occurs. 
Note  that for a given dome, when R* is large (or there is large 
volumetric liquid flow), the film will reach the rim at a velocity 
more different from the terminal velocity umt than for a small 
R*. The initial value of u~ is given by the physical inlet at r~ + 
for given Q, R, h, and v for accelerating flow. In designing a 
water film cooling system, R* may have the range of 10 -3 to 
10-1; the velocity reached at the rim is the inlet velocity to the 
cylindrical section. Instead of numerical results, the solution is 
illustrated with the case of a hemispherical dome. 

H e m i s p h e r i c a l  d o m e  

A special case of the above system is a hemispherical dome, 
where h/R = 1, and 0 is also the polar angle. If we take the 
conservative estimate of the friction factor based on terminal 
flow condition over radius R, Equation 21 reduces to 

R*u + du +/d(x/R) = sin (x/R) -- sin (x/R)u + ~ (24) 

with n = 1 for both laminar and turbulent flow. This gives a 
one-parameter  family of curves for various R* depending on 
the flow regime. Equat ion 24 is integrable with x / R  = O; Oi, u~- 
at the inlet, up to 0 = n/2 at the rim. This gives 

(cos Oi - cos O)/R* 
= 3-1/2 tan -x {31/2(u + - u+)/[2u+u~ - + (u + + u~) + 2]} 

+ 6 -1 In {[(1 - u~+)/(1 -u+)]3[(1  -- u+3) / (1-  u~+ a)]} 

(25) 

for computat ing u + from 0i to 0 = n/2 at the rim of the dome. 
For  a general discussion, one has for ui = 0 at 0i = 0 (accelera- 
ting flow) 

1 - cos 0 = R * { - 3  -1/2 tan - t  [3-1/2(2u + + 1)] 

+ 6 - t  In [(1 - u+3)/(1 - u+)3]} (26) 

and for u~ = oo at 0~ = 0 (decelerating flow) 

1 -- cos 0 = R*{3-x/2(rc/2) - 3 -1/2 t an -  113-t/2(2u + + 1)] 

+ 6 -1 In 1-(1 - u+3)/(1 - u+)3]} (27) 

for determining u + at 0 for any given ui + and Oi. 
Figure 2 gives the general relation for various values of R*. 

Where a curve of a given value of R* meets the line 0 = 7r/2 
gives the inlet u~ + to the cylinder. The film thickness b/b t is 
given by 1/u + sin 0; b t is the terminal film thickness. The trend 
of change of film thickness is seen by the numerals marked on 
the curves of various R* for u +, increasing in decelerating flow 
and thinning in accelerating flow. Since practical values of R* 
in the proposed containment (EPRI 1989) is of the order of 
10-3 to 10-2 for a spherical dome, the flow reaches its terminal 
velocity over a small polar angle, with film thickness adjusted 
according to Equat ion 4. One also notes that the approxima- 
tions in Equations 26 and 27 give a conservative estimate for 
decelerating flow because the local Reynolds number is higher 
over the dome than over the cylindrical wall. 

The price of averaging as in Equat ion 1 is that a derivation 
based on momentum integral method, a more logical averaging 
procedure than that of Equat ion 1, gives a coefficient of 9/10 
on the left-hand side of Equat ion 24 for laminar flow (R* for 
laminar flow may be modified by multiplying by 9/10); for 
turbulent flow, this coefficient will be even closer to 1. Another 
approximation is the use of a maximum friction factor for the 
system, which makes possible a closed-form solution for flow 
over the spherical dome. 
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S t r a i g h t  cy l inder  

Setting x /R  = n/2 reduces Equation 24 to the case of flow over 
the vertical cylinder or flat plate (x = z): 

u+du+/dX = 1 - u +s (28) 

where X is given by 

X = (x/R)/R* (29) 

since (Q/2nR) in Equat ion 22 or 23 reverts to QL, R cancels 
out, and X = (Q~J9v20)-l/ax for laminar  flow, for instance. 
Equation 28 is readily integrated in dosed form for both flow 
regimes represented by pertinent relations for R*: 

0 < u + < l :  X = ( 1 / 6 ) l n [ ( 1 - u + 3 ) / ( 1 - u + )  3] 
- -  3 -1/2 tan-l[31/2u+/(u + + 2)] (30) 

l _ < u  + < o o :  X = ( 1 / 6 ) l n [ ( 1 - u + 3 ) / ( 1 - u + )  3] 
- 3 -1/2 tan -11-3-1/2(2u + + 1)] 

+ (n/31/22) (31) 

where Equat ion 30 is for accelerating flow and Equat ion 31 is 
for decelerating flow. These relations are plotted as shown in 
Figure 3. A solution to a similar equation was given by 
Kasimov and Zigmund (Fulford 1964) expressed in terms of b 
instead of u + (note that b = QL/U+Umt) for laminar  flow only, 
with determination of X from X = 0 at u~ +. The length for 
development of terminal flow is now given by a single set 
of solution of Equation 28: 

Xl*/, -- Xi  = X(u~,/,) -- X(u~) (32) 
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Figure 3 D e v e l o p i n g  f l o w  o v e r  a f lat p late  or a large c y l i n d e r - -  
laminar or turbulent flow, u + = Um/Omt 
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where X1./° and u~o/° are the values of X at u + = 0.99 for 
accelerating flow and at u + = 1.01 for decelerating flow when 
the flow is practically at its terminal velocity. 

Solu t ion  in te rms  of Froude  n u m b e r  
of  f i lm f l o w  

An alternate method for determining the motion of the film 
down a domed cylinder is by replacing the equation of motion 
in terms of the Froude number  of the film, Fr  = uJ(bg  sin 0) t/2. 
We introduce a terminal Froude number,  Fr,~ = Umt/o/(btRg) 1/2 

when the film reaches its terminal velocity some distance down 
the side of the cylinder. If we express the equation of motion 
in terms of a dimensionless quanti ty F = Fr/FrtR, the equation 
of motion over a general ellipsoid of revolution, after substitu- 
tion of 

F = G3/2(1 - ar+2) TM (33) 

takes the form 

(R,Xh/r)2/3 G dG/dr + = (h/R)r +(1 _ r + 2)-t/2 
- -  r+.(1 - -  ar+2)1/2(1 _ r + 2 )  - 1 / 2 G 3  

(34) 

where a = 1 - (h/R)2; for the given dome shape (h/R), R* is as 
given before. The solution is given by integration from r + = r + 
at the inlet to r + = 1 at the rim of the dome. 

In the case of a hemispherical dome, Equation 34 re- 
duces according to R = h, d x + =  d r + l ( 1 -  r + 2 )  1/2, and x = 
R s in-ar+  = R 0, with 0 the polar angle. This gives, with 
x + = x/R,  

R*G dG/dO = sin 0 - sin 0 G 3 (35) 

with 0 < x + < n/2, with similar simplification as that leading 
to Equation 24. Note that Equation 35 is integrable in closed 
form as in Equations 24 and 25. The solution is identical to 
replacing u + by G in Figure 2. 

Cont inuing the above to the cylindricalportion beginning at 
the rim of the dome, Equation 34 further reduces to 

G dG/dX = 1 - G 3 (36) 

where X = x+/R *. Integration of Equat ion 36 starts from G 
(r ÷ = 1) at the rim of the dome, which becomes G~ at Xi of the 
cylinder with integration to X at a value of G (or F) that is 1 
percent away from G = 1. 

Note that Equation 36 is integrable in closed form, G is equal 
to F 2/3, and Equation 36 reduces to the same form as Equation 
28. The solution gives, from F = F~ to F = 1 ___ 0.01 C + "  for 
deceleration and " - "  for acceleration), 

X = (3- l/Z) tan-  1{31/2(F2/3 -- Fz/3)/[2F2/3F 2/3 
"+" ( F  2/3 + F 213) + 2]} 

+ 6 -1 In {[(I - F2/3)/(I - F2/3)]3[(I -- F2)/(I - F2)]} 

(37) 

Only the motion over the dome needs be integrated numeric- 
ally. This functional relation can also be expressed in the same 
form as in Equations 30 and 31 for general integration from 
F~ at X~ to F1./o at Xv/o. It is then identical to replacing u + by 
F 2/3 in Figure 3. While the advantage of computing with Fr  as 
a dependent variable is not  obvious, formulation by redefining 
Fr  with Um normal  to 0 may afford an exploration of a possible 
hydraulic jump over the port ion of the dome where 0 is small, 
depending on the inlet condit ion (Rahman et al. 1991). 
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Discussion 

The effect of the air stream over the liquid film is readily 
accounted for. As an illustration, the right-hand side 
of Equation 28 will have an additional term - ( f  J2) 
[pau2/p(3vg2Q/2~zR)a/3]u +, where the subscript a denotes 
those properties of air. One would then have to be 
satisfied with a numerical solution. 

When the effect of waves is significant, the above gives the 
average film velocity and thickness of symmetric flow distribu- 
tion over the domed cylinder. 

Effective wetting of the vessel is assisted by the use of a 
suitable coating and by a large initial flow rate of water. Cutting 
back to the desired flow for the period of time as designed 
provides for a stable liquid film less than 1 mm thick given 
consideration of interactions of surface tension, viscosity, and 
gravity. It was shown that at a contact angle of 20 °, a stable 
film of water at 300 K is attainable at a minimum flow of 
4 x 10 -s  ma/m,s based on a force criterion and a minimum 
flow of 10-4ma/m,s according to the energy criterion of 
Hartley and Murgatroyd (1964). Ideally, a circumferential uni- 
form film with fine wave crests is expected to flow down the 
wall of the vessel, but its uniformity might be affected adversely 
by the counterflow of the air in a natural draft and by the 
nonuniformity of its circumferential distribution (EPRI 1989). 
A chosen tolerance in the manufacture and coating process may 
also lead to this hydrodynamic instability due to the slower 
flow of a thin film than a thick film, which may lead to a flow 
in streaks over a given height. This condition can be improved 
by introducing a tangential component of water flow from its 
distributor. Since this tangential component tends to be dis- 
sipated by the wall friction over a relatively short height, it 
helps to even out initial distribution of water in the film, but 
will not ensure a uniform film, say, one containment diameter 
away from the top. Instability of film flow and the large contact 
angle of liquid with the solid surface may lead to dry patches 
and nonsymmetric flow distribution. 

Thermal instability (Fugita and Ueda 1978) of the liquid film 
may arise due to nonuniform internal heating in the vessel or 
nonuniform water film thickness due to an allowed tolerance 
in the manufacture of the vessel and its surface finish or due 
to the asymmetry of the natural-draft air flow over the liquid 
film. It is readily shown that an evaporating liquid film is 
inherently unstable because a thin spot tends to attain a higher 
surface temperature than the rest of the film for the same heat 
flux, leading to a greater evaporation rate that increases as 
dry-out is approached. This is enhanced by the increase in 
vapor pressure due to surface tension as the film thins out, in 
addition to the effect of the surface tension gradient, and may 
lead to dry patches over the vessel and nonuniform coverage 
of the liquid film. Conversely, a condensing film tends to remain 
stable. 

Conclus ions 

Equation 21 for a given geometry of the ellipsoidal dome over 
its height h or from r = ri (where u= = Umi) to r = R accounts 
for the developing flow in terms of u= over the dome to its 
edge, depending on the values of R*. R* correlates the flow 
quantity, fluid properties, characteristic dimension, and flow 
regime. The solution continues into the cylindrical portion of 
the vessel, where u= from the dome becomes u=i until the flow 
develops to practically u=t because of the waves and other 
disturbances. The closed-form solutions in the above provide 
a convenient means for computer code check. To account for 
evaporation of the film, computation can be carried out from 
given initial conditions with sectionally varying values of R*. 

It is seen that for R* of the order of 0.01 to 0.001, the liquid 
film develops to its terminal velocity and thickness over a very 
short distance. For R * <  0.001, which is the case in most 
applications, the film flow is practically at its local terminal 
velocity. 

Because of decreasing film Reynolds number as the flow 
proceeds downward, the transition of the flow regime tends to 
be from an initial turbulent range to the laminar range as the 
film Reynolds number decreases. Physically, this may occur at 
the larger radius as the volumetric flow rate per unit width 
decreases, or as this rate decreases by evaporation. 

An alternate method expresses the equation of motion of the 
film in terms of its variation in Froude number. In this case, 
fAm is replaced by (Fr/Fr,)2/S(h/R) x!s(1 - ar + 2)- x/6. However, no 
advantage in doing this is indicated. A possible hydraulic jump 
over a shallow dome has to be treated separately. 
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Append ix  1. D e v e l o p m e n t  of  f i lm f l o w  based 
on a p p r o x i m a t i o n  based on m o m e n t u m  integral  
m e t h o d  

A solution based on the momentum integral method (Schlicht- 
ing, 1979) has been developed for comparison to the above 
solutions. In the same coordinate system in Figure I, the 
equation of momentum integral of the film (neglecting the 
friction of air on the liquid surface) is given by 

((~/&Xru~Ox) + ru,(gudgx)a* - r 6 u , ( g u J & )  

= r (rwxjp)  - rg6 sin 0 (A.1) 

It differs from the boundary-layer equation in Schlichting 
because there is no free stream of the liquid, and d P / d x  = 0 
(Levich 1962). In Equation (A.1), u s is the surface velocity of 
the film for the case of laminar boundary-layer motion, u, = 
3u~/2, and the displacement thickness with boundary-layer 
thickness 6 inside b is given by 

fo 6" = [1 - (u/us)]dy = 0/3)6 (A.2) 

and correspondingly 

£ Ox = (u/uO[1 - (u/us)]dy = (2/15)6 (A.3) 

until 6 = b. We note that boundary-layer growth over a fiat 
plate with leading edge at x = 0 is given by 

6 ~- [5.83(vx/u,)] 1/2 (A.4) 

and the inlet length xi, is given by (1/5.83Xu,b/v)b. The latter 
is less than a centimeter for the cases in flow models under 
consideration for a containment system. Therefore, the effect 
of the inlet length can be neglected for the flow range under 
consideration, and 6 is taken as equal to b from the inlet. With 
Q = (2/3)21trbu,, Equation A.1 can be expressed as 

u,(duddx)  = (5/2){-2v(4n/3Q)2r2u 3 + 9[1 + (dr/dz)2] - 1/2) 

(A.5) 
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with x along the curved dome, with integration beginning from 
x~, b~ and u,~, assuming parabolic velocity profile from the 
beginning. Alternately, Equation A.5 can be expressed as 

u,(duJdz) = (5 /2 ) [ -  2v(4n/3Q)2r2u~] [ 1 + (dr/dz) 2] 1/2 + (5/2)0 
(A.6) 

with the understanding that us is in the direction of x. Transi- 
tion to the cylindrical section occurs as dr/dz = 0 and dx = dz. 
Note that the r 2 term in Equat ion A.6 gives sin 2 0 instead of 
sin 0 in Equation 24 where a conservative approximation of 
the friction factor based on terminal velocity over the cylinder 
of radius R was used. This effect is deemed minor  when applied 
to thin films. 

In the case of a 2-D vertical flat plate or cylinder of large 
radius as compared to the liquid film thickness, Equat ion A.6 
for vertical coordinate z can be expressed in the form 

(2/5)u~(d/dz)u~b = -2v(uJb)  + bg (A.7) 

With the continuity condit ion (2/3)usb = QL or b = (3/2)QL/U,, 
it can be reduced to 

us(dus/dz) = --(20/9)(v/QZL)u~ + (5/2)9 (A.8) 

Equation A.8 is integrable for constant  0 by separation of 
variables. With the initial conditions z = 0, u = usi, and QL = 
(2/3)usibi, the terminal velocity u,t =gb2/2v ,  and u,t = 
[90Q2/v]l/3/2 = (3/2)Umt, Equation A.8 can be expressed in the 
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same form as Equation 28: 

u ÷ du+/dX = 1 - u +3 (A.9) 

Now, however, X = (x/R)/R* with R* = R*, 

R* = (9/lO)[(Q/2n)4/9RTv2g] 1/3 (A.10) 

This difference by a factor of 9/10 from Equat ion 22 accounts 
for the difference in the averaging procedure. For  a turbulent  
liquid film, the difference of a corresponding factor from 1 is 
expected to be still smaller. 
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